GOAL

British mathematician and cryptanalyst Alan Turing made a significant contribution to the advent of computers. We are offering you a chance to use a proto-computer, working without electricity or electronics, to find secret codes.

Be the first to find the only code that will pass the test of all Verifiers. The code is made up of 3 numbers between $\mathbf{1}$ and 5 :

Each Verifier checks for one CRITERION.
For example, "The number is odd."
Once you have deduced all the criteria, you can figure out the only code that will satisfy them all.
For solitaire play or coop, see the SOLO AND COOPERATIVE MODES section, p. 8.

PROBLEMS

Difficulty Factor／Luck

15 品

A 2778 i
B $7654{ }^{\circ}$
C 12614

D	16	640

| E | 19 | 751 |
| :--- | :--- | :--- | :--- |
| F | 22 | 485 |

F 2248

 $+$

710 ［404 $715{ }^{\text {\＃}} 302$ Verification cards

ONLINE

PROBLEMS

This booklet contains 20 problems to solve，or 20 games．． But you will ind literally milic website！！

口嘫回 Scan the QR code

 resh turingmachine．infoFor problems that work with the rules as presented
the＇Classic＇mode．

You will also find $\mathbf{2}$ new，more challenging modes of play． The first，called＇Extreme＇，has
2 cards in front of each Verifier 2 cards in front of each Verif amongst those presented on the 2 cards）．
In the second mode，called
＇Nightmare＇you do not know ＇Nightmare＇，you do not know with which Verification card．

SOLUTIONS

3. DEDUCE

Put your punch cards back in the support and analyse your
answers. Write answers. Write down your deductions on your
Determine if you have found the code or not.

4. END OF ROUND

Once all players have asked their questions and completed their deductions, everyone extends their closed fist and
counts to 3 simultaneously. On 3, point your thumb either
up or down at the same time as everyone else.

- Point upwards if you think you have found the code. - Point downwards if you have not yet found it.

If nobody has pointed upward, start a new round
If one or more players has pointed upward, go to the VERIFICATION AND END OF GAME section.

VERIFICATION
 AND END OF GAME

If one or more players think they have found the code, they should we thecrelly (and chany!) on their note sheet the bottom of p . 3 in this booklet, or uses the appropriate button in the application, and verifies if their code is correct.

If more than one person is correct, the one who found the code asking THE FEWEST questions wins. This is why keeping track of all your answers is so important (writing \boldsymbol{V} or \boldsymbol{X}). If it is still tied, all tied players win. Prove and then making sure it passes the tests of all the Verifiers!

If nobody has found the correct code, the players who were incorrect are eliminated, and the game continues for the other players. If there is only one player remaining, they win by default!

When the game is over, don't forget to erase the \boldsymbol{V} on the back of the Verification cards.

NOTE SHEETS

Learn how to take good notes if you want to win!

1 Each round, write your proposal on the line of the current round.
2 Write the answers you got (\boldsymbol{V} or \boldsymbol{X}) from each Verifier in the proper column. This is obligatory, and keeps track of the number of questions you've asked.
(3) Use this section to cross off any numbers you've eliminated.
Use the bottom section to write down all the information you've learned about each.

5 Write the Verifier's criterion in this space once you have identified it.

This does NOT mean that the number is ! Verifier A doesn't know what the value of is, they just know that is greater than

1. If you'd d put $2,3,4$, or 5 , A would have answered .
Write your answer on our note sheet: write proposal.

Put the Verification card back, face-down Because you have identified A's criterion
you won't need to question them again: you'll get no new information from them.

You then question Verifier D with the same proposal (which you need to keep for the They answer $\dot{\text { Wr }}$. What does that mean? verifies one thing only: which of \triangle. is the smallest. In your proposal, is he smallest, and this does not pass D's either \triangle or .
inally, you decide to question C . They verify one of 3 criteria: either Δ is greater than Q, or Δ is smaller than or $\boldsymbol{\text { or }} \boldsymbol{\text { is eq equal to }}$. \mathbf{C} answers \boldsymbol{X}
to your proposal. \mathbf{C} 's criteria is not the number is greater than the ne." "There are therefore 2 remainin possibilities: EITHER the \triangle number is the same as the number, OR
number is less than the one.

You can't ask any more questions this ound.

$\triangle \square^{\circ} \mathrm{ABCCDEF}$:
	- п®
- ㅁㅁㅁㅁㅁㅁ	555
-	4 4 x
- 0 吅吅	73^{3}
	z z z
-	${ }^{1 \times 1}$

REMINDERS AND CLARIFICATIONS

Game Order

Compose your proposal and question Verifiers
at the same time as the other players.

There aren't enough punch cards:

 In the rare case that you need an unavavailable has finished using theirs to take it.
Don't get mixed up:

Put the Verification cards back in front of the correct Verifier immediately after you have
finished questioning the Verifiers!

Number of Questions per round:

 You can question a maximum of 3 Verifiers than 3
You must keep the same proposa

 for the entire round:It is obligatory to write down on your note sheet your proposals and the answer to ALL the questions you ask. This will serve
determine the winner in case of a tie

Strategy:
You will need the criteria of all the Verifiers to find the code. No criterion is superfluous.

Only one code respects all the criteria.

Public and Secret information:

 Your proposal and the Verifiers you question and notes secret.
CRITERIA CARD EXPLANATIONS

At the beginning of every game, take the time to discuss and understand the meaning of each Criteria card. To help with this, here are some remarks and clarifications for each card. Cards w
very simila structures have been grouped together in this list.

Card 1
To pass the test of this Verifier you must find if the
Δ number is equal to or greater than 1 Watch outilf the \triangle number in your proposal is 3 and you
get a
this does NOT mean that the \triangle number is 3 , it only means that it must be greater than 1 (and not equal to it). These cards work in a very similar way to Card \#1, but there These cards workin a very simiar way to Card \#1, but there
are now 3 possibilities. In Card $\# 2$, the \triangle number can be indicated. Watch outt If the \triangle number in your proposal is 2 and you get a \checkmark, this does NOT mean that the \triangle number is 2 , it
only means that t must be less than 3 .
EVEN Cards 5 to 7
To pass this test, find if the \triangle number has to be even Cards 8 to 10
? $1 \begin{aligned} & \text { The Verifier verifies that there is a precise number (that the } \\ & \text { know) of } 1 \text { s in your rooposal. .ore example they }\end{aligned}$ know) of 1 sin your proposal. Fore example, they can verify
thay there are two (no more, , less). In this case, the code that here are two (no
can be 113, 151, 411, etc.
 Cards 11 to 13 hese cards work similarly to cards 2 to 4 , but instead of comparing a number in your proposasa t to another specific
number, tit s comparing two numbers
within your proposal. For example, the \triangle number with the number.
Watch outl I y you get \rrbracket if your proposal is $3 \triangle$ and 3 . Watch outl I I you get $\rrbracket_{\text {if }}$ y your proposal is $3 \triangle$ and $3 \square$.
this does NOT mean that the numbers are 3 , just that they this does NOT mean
have to be the same.
 Cards 14 to 15
The Verifier verifies that the number of a particular colour The Verifier verifies that the number of a particular colour
(that they know) is smaller than all the other numbers.
Even ODD Car The Verifier verifies that there are more of either even
(e.g.: 454) (e.g. 454) or odd (e.g. 341) numbers in the code.
$? \times$ EVEN The Verifier verifies that there is a precise number (that they know) of even numbers in the code: zero, one, two, or three.

Cards 28 to 30

The Verifier verifies that the number of a particular colour (that they know) is 1. (e.g.: The number is 1.) Watch out! The other colours' numbers can also be 1... the Verifier is just not verifying that.

Cards 31 to 32
The Verifier verifies that the number of a particular colour (that they know) is greater than 1.
Watch out! The other colours' numbers can also be greater than 1... the Verifier is just not verifying that.

Card 33
The Verifier verifies that the number of a particular colour (that they know) is odd or even. (e.g.: The number is even.) Watch out! The other numbers can also be even (or odd, depending).

Cards 34 to 35
The Verifier verifies that the number of a particular colour is less than or equal to all the other numbers. (e.g.: They verify that no other colour is less than .)

Card 36
The Verifier verifies that the sum of all the numbers in the code is a multiple of 3 , or a multiple of 4 , or a multiple of 5 .

The Verifier verifies that the sum of two particular numbers (that they know) is 4.

Cards 39 to 41
The Verifier verifies that the number of a particular colour (that they know) is less than, equal to, or greater than 1.

Card 42
The Verifier verifies that the number of a particular colour (that they know) is either less than or greater than either of the others (e.g.: The number is greater than the others).

Cards 43 to 44
The Verifier verifies that the Δ number is less than, equal to, or greater than another particular number (that they know).

Cards 45 to 47
The Verifier verifies that the number of 1 s or the number of 3 s in the code is equal to a particular number (that they know).

Card 48
The Verifier verifies that that the number of a particular colour (that they know) is either less than, equal to, or greater than that of another particular colour (that they know). (e.g.: the number is greater than the number.)

SOLO AND COOPERATIVE MODES

TAKE ON THE MACHINE!

Go to turingmachine.info and select a problem you'd like to solve. On your own or in a team, solve the problem in the fewest rounds (and questions) possible, using only one note sheet.

When you have found the code, click on MACHINE. You will discover how many rounds and questions our artificial intelligence took to find the code. To win, you must have done as well as or better than the Machine.

Watch out! Like in the regular game, you can only ask a maximum of 3 questions per round.

Share your successes on social media with the hashtag \#turingmachinegame

HANDICAP SYSTEM

If an experienced player is playing against newer players, we strongly recommend using this system to level the playing field. In the first round (and only the first), the experienced player fills in a number of answer squares. These squares count as questions the player would have asked (leaving fewer for the player to ask in the first round).
Fill in 1 square if the difference in experience/skill is slight, and 2 squares if the difference is greater.
For example, in the latter case, the player could only ask one question in the first round, because there are 2 squares already filled in!

Publisher: Christian Lemay

Creative Director: Manuel Sanchez
Graphic Design/Illustration: Sébastien Bizos Translation: Matthew Legault

We finance the replanting of all trees used in the production of our games.

